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Abstract 30 

Streamflow forecasting is prone to substantial uncertainty due to errors in meteorological forecasts, 31 

hydrological model structure and parameterization, as well as in the observed rainfall and streamflow 32 

data used to calibrate the models. Statistical streamflow post-processing is an important technique 33 

available to improve the probabilistic properties of the forecasts. This study evaluates three residual error 34 

models based on the logarithmic (Log), log-sinh (Log-Sinh) and Box-Cox with λ = 0.2 (BC0.2) 35 

transformation schemes and identifies the best performing scheme for post-processing monthly and 36 

seasonal (3-months) streamflow forecasts, such as those produced by the Australian Bureau of 37 

Meteorology. Using the Bureau’s operational dynamic streamflow forecasting system, we carry out 38 

comprehensive analysis of the three post-processing schemes across 300 Australian catchments with a 39 

wide range of hydro-climatic conditions. Forecast verification is assessed using reliability and sharpness 40 

metrics, as well as the Continuous Ranked Probability Skill Score (CRPSS). Results show that the 41 

uncorrected forecasts (i.e. without post-processing) are unreliable at half of the catchments. Post-42 

processing using the three residual error models substantially improves reliability, with more than 90% 43 

of forecasts classified as reliable. In terms of sharpness, the BC0.2 scheme significantly outperforms the 44 

Log and Log-Sinh schemes. Overall, the BC0.2 scheme achieves reliable and sharper-than-climatology 45 

forecasts at a larger number of catchments than the Log and Log-Sinh error models. This study is 46 

significant because the reliable and sharper forecasts obtained using the BC0.2 post-processing scheme 47 

will help water managers and users of the forecasting service to make better-informed decisions in 48 

planning and management of water resources. 49 

Keywords: seasonal streamflow forecasts, residual error models, post-processing, Box-Cox 50 

transformation 51 
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 58 

Key points 59 

1. Uncorrected and post-processed streamflow forecasts (using three residual error models, based 60 

on the Log, Log-Sinh and BC0.2 transformations respectively) are evaluated over 300 diverse 61 

Australian catchments. 62 

2. Post-processing enhances streamflow forecast reliability, increasing the percentage of sites with 63 

reliable predictions from 50% to over 90%. 64 

3. The BC0.2 transformation achieves significantly better forecast sharpness than the Log-sinh and 65 

Log transformations, particularly in dry catchments.   66 

67 
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1 Introduction 68 

Hydrological forecasts provide crucial supporting information on a range of water resource management 69 

decisions, including (depending on the forecast lead-time) flood emergency response, water allocation 70 

for various uses, and drought risk management (Li et al., 2016; Turner et al., 2017). The forecasts, 71 

however, should be thoroughly verified and proved to be of sufficient quality to support decision-making 72 

and to meaningfully benefit the economy, environment and society. 73 

Sub-seasonal and seasonal streamflow forecasting systems can be broadly classified into two types 74 

(Crochemore et al., 2016): 75 

i. Dynamic modelling systems. Here, a hydrological model is commonly developed at a daily time-step 76 

to capture key hydrological processes. The model is calibrated against observed streamflow using 77 

historical rainfall and potential evaporation data. Once the model is calibrated, rainfall forecasts from a 78 

numerical climate model are used as an input to produce daily streamflow forecasts, which are then 79 

aggregated to the time scale of interest and post-processed using statistical models. Examples of 80 

operational services based on the dynamic approach include the Australian Bureau of Meteorology’s 81 

dynamic modelling system (Laugesen et al., 2011; Tuteja et al., 2011; Lerat et al., 2015); the 82 

Hydrological Ensemble Forecast Service (HEFS) of the US National Weather Service (NWS) (Brown 83 

et al., 2014; Demargne et al., 2014); the Hydrological Outlook UK (HOUK) (Prudhomme et al., 2017); 84 

and the short-term forecasting European Flood Alert System (EFAS) (Cloke et al., 2013). 85 

ii. Statistical modelling systems. Here, a statistical model based on relevant predictors is applied directly 86 

at the time scale of interest. A number of predictors have been considered in the literature, including 87 

antecedent rainfall and streamflow, soil moisture, depth and extent of snow cover, and climate indices 88 

derived from sea surface temperature (Robertson and Wang, 2009, 2011; Wang et al., 2009; Tang and 89 

Lettenmaier, 2010; Lü et al., 2016; Zhao et al., 2016). The Bureau of Meteorology’s Bayesian Joint 90 

Probability (BJP) forecasting system is an example of an operational service based on a statistical 91 

approach (Senlin et al., 2017).  92 

Hybrid systems that share some characteristics of dynamic and statistical approaches have also been 93 

investigated. For example, Robertson et al. (2013) and Humphrey et al. (2016) used dynamic model 94 

simulations as predictors for statistical models. 95 

Dynamic and statistical approaches have distinct advantages and limitations. Dynamic systems can 96 

potentially provide realistic responses in unfamiliar climate situations as it is possible to impose physical 97 

constraints in such situations (Wood and Schaake, 2008). In comparison, statistical models have the 98 

flexibility to include features that may lead to more reliable predictions. For example, the BJP model 99 
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uses climate indices (e.g. NINO3.4), which are typically not used in dynamic approaches. That said, the 100 

suitability of statistical models for the analysis of non-stationary catchment and climate conditions is 101 

questionable (Wood and Schaake, 2008).  102 

Streamflow forecasts built on hydrological models are affected by uncertainty in a number of factors, 103 

including rainfall forecasts, observed rainfall and streamflow data, as well as the parametric and 104 

structural uncertainty of the hydrological model. Progress has been made towards reducing biases and 105 

characterizing the sources of uncertainty in streamflow forecasting. These advances include improving 106 

rainfall forecasts through post-processing ( Robertson et al., 2013b; Crochemore et al., 2016), accounting 107 

for input, parametric and/or structural uncertainty (Kavetski et al., 2006; Kuczera et al., 2006; Renard et 108 

al., 2011; Tyralla and Schumann, 2016) and using data assimilation techniques (Dechant and 109 

Moradkhani, 2011). Although these steps may improve some aspects of the forecasting system, a 110 

residual bias may nonetheless remain. Such bias can only be reduced via post-processing, which, if 111 

successful, will improve forecast accuracy and reliability (Madadgar et al., 2014; Lerat et al., 2015).  112 

This study focuses on improving streamflow forecasting using dynamic approaches, by identifying 113 

residual error models suitable for post-processing hydrological forecasts at monthly and seasonal time-114 

scales. A number of post-processing approaches have been investigated in the literature, including 115 

quantile mapping (Hashino et al., 2007), Bayesian frameworks (Pokhrel et al., 2013; Robertson et al., 116 

2013a), as well as methods based on state-space models and wavelet transformations (Bogner and Kalas, 117 

2008). Wood and Schaake (2008) used the correlation between forecast ensemble means and 118 

observations to generate a conditional forecast. Compared with the traditional approach of correcting 119 

individual forecast ensembles, the correlation approach improved forecast skill and reliability. In another 120 

study, Pokhrel et al. (2013) implemented a Bayesian Joint Probability (BJP) method to correct biases, 121 

update predictions and quantify uncertainty in monthly hydrological model predictions in 18 Australian 122 

catchments. The study found that the accuracy and reliability of forecasts improved. More recently, 123 

Mendoza et al. (2017) evaluated a number of seasonal streamflow forecasting approaches, including 124 

purely statistical, purely dynamical, and hybrid approaches. Based on analysis of catchments 125 

contributing to five reservoirs, the study concluded that incorporating catchment and climate information 126 

into post-processing improves forecast skill. While the above review mainly focused on post-processing 127 

at sub-seasonal and seasonal forecasts (as it is the main focus of the current study), post-processing is 128 

also commonly applied to short-range forecasts (e.g. Li et al., 2016; Seo et al., 2006) and to long-range 129 

forecasts up to 12 months ahead (Bennett et al., 2016). 130 

In most streamflow post-processing approaches, a residual error model is applied to quantify forecast 131 

uncertainty. Most residual error models are based on least squares techniques with weights and/or data 132 
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transformations (e.g. Carpenter and Georgakakos, 2001; Li et al., 2016; Seo et al., 2006). In order to 133 

produce post-processed streamflow forecasts, a daily-scale residual error model is used in the calibration 134 

of hydrological model parameters, and a monthly/seasonal-scale residual error model used as part of 135 

streamflow post-processing to quantify the forecast uncertainty. In a recent study, McInerney et al. 136 

(2017) concluded that residual error models based on Box-Cox transformations with fixed parameter 137 

values are particularly effective for daily scale predictions, yielding significant improvements in dry 138 

catchments. While McInerney et al. (2017) used observed rainfall to force the hydrological model, and 139 

evaluated daily streamflow predictions, this study investigates whether these findings generalize to 140 

monthly and seasonal forecasts using forecast rainfall. 141 

An important aspect of this work is its focus on general findings applicable over diverse hydro-142 

climatological conditions. Most of the studies in the published literature use a limited number of 143 

catchments and case studies to test prospective methods. Dry catchments, characterised by intermittent 144 

flows and frequent low flows, pose the greatest challenge to hydrological models (Ye et al., 1997; 145 

Knoche et al., 2014). Yet the provision of good quality forecasts across a large number of sites is an 146 

essential attribute of national scale operational forecasting service, especially in large countries with 147 

diverse climatic and catchment conditions, such as Australia. 148 

This paper aims to develop streamflow post-processing approaches suitable for use in an operational 149 

streamflow forecasting service. More specifically, our aims are:  150 

Aim 1: Evaluate the value of streamflow forecast post-processing by comparing forecasts with no post-151 

processing (hereafter called ‘uncorrected’ forecasts) against post-processed forecasts.  152 

Aim 2: Evaluate three residual error models proposed in recent publications, namely the Log, Box-Cox 153 

(McInerney et al., 2017) and Log-Sinh (Wang et al., 2012) schemes, for monthly and seasonal 154 

streamflow post-processing.  155 

Aim 3: Evaluate the generality of results over a diverse range of hydro-climatic conditions, in order to 156 

ensure the recommendations are robust in the context of an operational streamflow forecasting service.  157 

To achieve these aims, we use the operational monthly and seasonal (3-months) dynamic streamflow 158 

forecasting system of the Australian Bureau of Meteorology (Lerat et al., 2015). We evaluate the residual 159 

error models across 300 catchments across Australia, with detailed analysis of dry and wet catchments. 160 

Forecast verification is carried out using Continuous Ranked Probability Skill Score (CRPSS) as well 161 

as metrics measuring reliability and sharpness, which are important aspects of a probabilistic forecast 162 

(Wilks, 2011). These metrics are used by the Bureau of Meteorology to describe streamflow forecast 163 

performance of the operational service. 164 
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The rest of the paper is organised as follows. The forecasting methodology is described in Section 2 and 165 

application studies are described in Section 3. Results are presented in Section 4, followed by discussions 166 

and conclusions in Sections 5 and 6 respectively. 167 

2 Seasonal Streamflow forecasting methodology 168 

2.1 Overview 169 

The streamflow forecasting system adopted in this study is based on the Bureau of Meteorology’s 170 

dynamic modelling system (Figure 1). This dynamic modelling system uses daily rainfall forecasts as 171 

inputs into a daily rainfall-runoff model to produce daily streamflow forecasts. These streamflow 172 

forecasts are then aggregated in time and post-processed to produce monthly and seasonal streamflow 173 

forecasts, which are issued each month. In general, two steps are involved: simulation and forecasting. 174 

2.2 Simulation Step 175 

In the simulation step, the daily rainfall-runoff model is calibrated to observed daily streamflow using 176 

observed rainfall (Jeffrey et al., 2001) as forcing. 177 

The rainfall-runoff model GR4J (Perrin et al., 2003) is used as it has been proven to provide (on average) 178 

good performance across a large number of catchments ranging from semi-arid to temperate and tropical 179 

humid (Perrin et al., 2003; Tuteja et al., 2011). The calibration of the hydrological model is based on the 180 

weighted least squares likelihood function, similar to that outlined in Evin et al. (2014). Markov Chain 181 

Monte Carlo (MCMC) analysis is used to estimate posterior parametric uncertainty (Tuteja et al., 2011). 182 

Following MCMC analysis, 40 random sets of GR4J parameters are retained and used in the forecast 183 

step. 184 

2.3 Forecast Step 185 

Once the hydrological model is calibrated, daily downscaled rainfall forecast from the Bureau of 186 

Meteorology’s global climate model, namely the Predictive Ocean Atmosphere Model for Australia  187 

POAMA-2 (Hudson et al., 2013), are routed through the hydrological model to produce daily 188 

uncorrected streamflow forecasts. The atmospheric component of POAMA-2 uses a spatial scale of 189 

approximately 250   250 km (Charles et al., 2013). To estimate catchment-scale rainfall, a statistical 190 

downscaling model based on an analogue approach (Timbal and McAvaney, 2001) was applied. In the 191 

analogue approach, local climate information is obtained by matching analogous previous situations to 192 

the predicted climate. To this end, an ensemble of 166 rainfall forecast time series (33 POAMA 193 

ensembles   5 replicates from downscaling + 1 ensemble mean) were generated. These forecasts are 194 

then input into GR4J and propagated using the 40 GR4J parameter sets to obtain 6640 (166   40) daily 195 

streamflow forecasts. The daily streamflow forecasts generated using GR4J are then aggregated to 196 
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monthly and seasonal time scales to produce ensembles of 6640 uncorrected monthly and seasonal 197 

forecasts. 198 

2.4 Streamflow post-processing 199 

Post-processing of streamflow forecasts is intended to remove systemic biases in the mean, variability 200 

and persistence of the uncorrected forecasts, which arise due to inaccuracies in the downscaled rainfall 201 

forecasts (e.g. errors in downscaled forecast rainfall from approximately a 250 km grid to the catchment 202 

scale) and in the hydrological model (e.g. due to the effects of data errors on the model calibration and 203 

due to structural errors in the model itself). 204 

The streamflow post-processing method used in this work consists of fitting a statistical model to the 205 

streamflow forecast residual errors, defined by the differences between the observed and forecast 206 

streamflow time series over a calibration period. Typically these residual errors are heteroscedastic and 207 

exhibit persistence. Heteroscedasticity is handled using data transformations (e.g. the Box-Cox 208 

transformation), whereas persistence is represented using autoregressive models (e.g., the lag-one 209 

autoregressive model, AR(1)). We begin by describing the two major steps of the streamflow post-210 

processing procedure (Sections 2.4.1 and 2.4.2), and then describe the transformations under 211 

consideration (Section 2.5). 212 

2.4.1 Calibration of residual error model parameters 213 

The parameters of the streamflow post-processing model are calibrated in the following three steps: 214 

Step 1: Compute the transformed forecast residuals for month or season t of the calibration period: 215 

     𝜂𝑡 = 𝑍(𝑄𝑡̃) − 𝑍(𝑄𝑡
𝐹)    (1)  216 

where t is the normalised residual, 𝑄𝑡̃ is the observed streamflow, F

tQ is the median of the uncorrected 217 

streamflow forecast ensemble, and Z is a transformation function used to reduce the heteroscedasticity 218 

and skewness of the residuals (Wang et al., 2012; McInerney et al., 2017). The data transformation 219 

functions are detailed in Section 2.5.  220 

Step 2: Compute the standardised residuals according to: 221 

 ( ) ( )( ) /m t m t

t t         (2) 222 

where ( )m t

  and ( )m t

  are the monthly mean and standard deviation of the residuals in the calibration 223 

period for the month ( )m t . The standardisation process in equation (2) aims to account for seasonal 224 

variations in the distribution of residuals.  225 
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The quantities ( )m t

 and ( )m t

 are calculated independently as the sample mean and standard deviation of 226 

residuals for each monthly period (for a monthly forecast) or three-monthly period (for seasonal 227 

forecasts). The standardised residuals vt are assumed to have a zero mean and unit standard deviation. 228 

Step 3: Assume the standardised residuals are described by a first order autoregressive (AR(1)) model: 229 

 1 1t t ty      (3) 230 

where  is the AR(1) coefficient and 1ty  ~ N (0, 
y ) is the innovation assumed to follow a Gaussian 231 

distribution.   232 

The parameters  and 
y are estimated based on the method of moments:  is set to the sample auto-233 

correlation of the standardized residuals ν , and 
y  is set to the sample standard deviation of the 234 

observed innovations y , which are calculated from the standardized residuals ν  by re-arranging 235 

equation (3). 236 

2.4.2 Streamflow forecasting 237 

Once the streamflow post-processor has been calibrated, the post-processed streamflow forecasts for a 238 

given period are computed. For a given ensemble member j, the following steps are applied (note the 239 

additional subscript j  for the ensemble number): 240 

Step 1: Sample the innovation 𝑦𝑡+1,𝑗 ← 𝑁(0, 𝜎𝑦). 241 

Step 2: Generate the standardized residuals 𝑣𝑡+1,𝑗 using equation (3). Here ,t j is determined using 242 

equation (2) and ,t j  using equation (1), which uses the streamflow forecasts and observations from the 243 

previous time step t.  244 

Step 3: Compute the normalized residuals 𝜂𝑡+1,𝑗 by “de-standardizing” 𝑣𝑡+1,𝑗: 245 

 𝜂𝑡+1,𝑗 =  𝜎𝜂
𝑚(𝑡)

𝑣𝑡+1,𝑗 + 𝜇𝜂
𝑚(𝑡)

   (4) 246 

Step 4: Back-transform each normalized residual 𝜂𝑡+1,𝑗 to obtain the post-processed streamflow forecast: 247 

 𝑄𝑡+1,𝑗
𝑃𝑃 =  𝑍−1[𝑍(𝑄𝑡+1

𝐹 ) + 𝜂𝑡+1,𝑗]  (5) 248 

Steps 1-4 are repeated for all ensemble members (6640 in our case). 249 

Note that the above algorithm may occasionally generate negative streamflow, which is then set to zero. 250 

This aspect is discussed in Section 5.6. 251 
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2.5 Transformations used in the residual error model 252 

The observed streamflow and median streamflow forecast are transformed in Step 1 of streamflow post-253 

processing (Section 2.4.1), to account for the heteroscedasticity and skewness of the forecast residuals. 254 

To achieve Aim 2 of this study, we trial three different transformations, namely the logarithmic, log-255 

sinh and Box-Cox transformations. 256 

2.5.1 Logarithmic (Log) transformation 257 

The logarithmic (Log) transformation is 258 

  ( ) log( )Z Q Q c    (6) 259 

The offset  c ensures the transformed flows are defined when 0Q  . Here we set c = 0.01 × (𝑄̃)𝑎𝑣𝑒 260 

, where (𝑄̃)𝑎𝑣𝑒 is the average observed streamflow over the calibration period. The use of a small fixed 261 

value for c is common in the literature for coping with zero flow events (Wang et al., 2012). 262 

2.5.2 Log-Sinh transformation 263 

The Log-Sinh transformation (Wang et al., 2012) is 264 

   
1

( ) log sinh( )Z Q a bQ
b

    (7) 265 

The parameters a and b are calibrated for each month by maximising the p-value of the Shapiro-Wilk 266 

test (Shapiro and Wilk, 1965) for normality of the residuals, v. This pragmatic approach is part of the 267 

existing Bureau’s operational dynamic streamflow forecasting system (Lerat et al., 2015). 268 

2.5.3 Box-Cox 269 

The Box-Cox transformation (Box and Cox, 1964) is   270 

  
( ) 1

( ; , )
Q c

Z Q c





 
   (8) 271 

where λ is a power parameter and 𝑐 = 0.01 × (𝑄̃)𝑎𝑣𝑒. Following the recommendations of McInerney et 272 

al. (2017),  the parameter λ is fixed to 0.2. This avoids the need to calibrate λ, and related problems with 273 

doing so.   274 

2.5.4 Rationale for selecting transformational approaches 275 

The Log transformation is a widely used transformation that is simple to implement; McInerney et al. 276 

(2017) reported that in daily scale modelling it produced the best reliability in perennial catchments 277 

(from a set of eight residual error schemes, including standard least squares, weighted least squares, BC, 278 
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Log-Sinh and reciprocal transformation). However, the Log transformation performed poorly in 279 

ephemeral catchments, where its precision was far worse than in perennial ones.  280 

The Log-Sinh transformation is an alternative to the Log and BC transformations proposed by Wang et 281 

al. (2012) to improve the precision at higher flows. The Log-Sinh approach has been extensively applied 282 

to water forecasting problems (see for example, Del Giudice et al., 2013; Robertson et al., 2013b, Bennett 283 

et al., 2016). However, McInerney et al. (2017) found that in daily scale modelling of perennial 284 

catchments, when using observed rainfall, the Log-Sinh scheme did not improve on the Log 285 

transformation (its parameters tend to calibrate to values for which the Log-Sinh transformation reduces 286 

to the Log transformation). 287 

Finally, the BC transformation with fixed λ = 0.2 is recommended by McInerney et al. (2017) as one of 288 

only two schemes (from the set of eight, see above) that achieve “Pareto-optimal” (e.g., Cohon and 289 

Marks, 1975) performance in terms of reliability, precision and bias, across both perennial and 290 

ephemeral catchments. McInerney et al. (2017) also found that calibrating λ did not generally improve 291 

predictive performance, due to the inferred value being dominated by the fit to the low flows at the 292 

expense of the high flows.     293 

2.6 Summary 294 

In the remainder of the paper, the term “uncorrected forecasts” refers to streamflow forecasts obtained 295 

using steps in Sections 2.1-2.3, and the term “post-processed forecasts” refers to forecasts based on a 296 

streamflow post-processing model, which includes the standardization and AR(1) model from Section 297 

2.4, as well as a transformation (Log, Log-Sinh or BC0.2) from Section 2.5. As the streamflow residual 298 

error models considered in this work differ solely in the transformation used, they will be referred to as 299 

the Log, Log-Sinh and BC0.2 schemes. 300 

3 Application 301 

3.1 Data 302 

A comprehensive set of 300 catchments representative of the diverse Australian hydro-climatic 303 

conditions is used, with locations shown in Figure 2. In each catchment, data from 1980-2008 is used. 304 

Observed daily rainfall data was obtained from the Australian Water Availability Project (AWAP) 305 

(Jeffrey et al., 2001). Potential evaporation and observed streamflow data were obtained from the Bureau 306 

of Meteorology. Rainfall forecasts from POAMA-2 were downscaled based on an analogue approach 307 

(Timbal and McAvaney, 2001). These 300 sites are currently being evaluated as part of the expansion 308 

of dynamic modelling for the seasonal streamflow forecasting service of the Bureau of Meteorology. 309 

The figure also shows the Koppen climate zones.  310 
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3.2 Catchment classification  311 

The performance of the residual error models is evaluated separately in dry versus wet catchments. In 312 

this work, the classification of catchments into dry and wet is based on the aridity index (AI) according 313 

to the following equation 314 

 
P

AI=
PET

  (9) 315 

where P is the total rainfall volume and PET is the total potential evapotranspiration volume. The aridity 316 

index has been used extensively to identify drought and wetness conditions of hydrological regimes ( 317 

Zhang et al., 2009; Carrillo et al., 2011; Sawicz et al., 2014). 318 

Catchments with AI < 0.5 are categorised as “dry”, which corresponds to hyper-arid, arid and semi-arid 319 

classifications suggested by the United Nations Environment Programme (Middleton et al., 1997). 320 

Conversely, catchments with AI ≥ 0.5 are classified as “wet”. Overall, about 28% of catchments used in 321 

this work are classified as dry. 322 

3.3 Cross-validation procedure  323 

The forecast verification is carried out using a moving-window cross-validation framework, as shown 324 

in Figure 3. Suppose we are validating the streamflow forecasts in year j ( 1990j   in Figure 3). In this 325 

case the calibration is carried out using all years except j, j+1, j+2, j+3 and j+4. The four-year period 326 

after year j are excluded to avoid the effects of memory in the hydrological model. The process is then 327 

repeated for each year during 1980-2008. Once the validation has been carried out for each year, the 328 

results are concatenated together to produce a single “validation” time series, for which the verification 329 

metrics are calculated.  330 

3.4 Verification metrics 331 

The goal of the forecasting exercise is to maximise sharpness without sacrificing reliability (Gneiting et 332 

al., 2005; Wilks, 2011; Bourdin et al., 2014). Therefore the performance of uncorrected and post-333 

processed streamflow forecasts is evaluated using reliability and sharpness metrics, as well as the 334 

Continuous Ranked Probability Skill Score (CRPSS, see section 3.4.3). Note that the Bureau of 335 

Meteorology uses Root Mean Squared Error (RMSE) and Root Mean Squared Error in Probability 336 

(RMSEP) scores in the operational service in addition to CRPSS, however, RMSE and RMSEP results 337 

have not been included in the current paper.   338 

Forecast verification metrics are computed separately for each forecast month. To facilitate the 339 

comparison and evaluation of streamflow forecast performance in different streamflow regimes, the high 340 
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and low flow months are defined  using long-term average streamflow data calculated for each month – 341 

“high flow” months are the 6 months with the highest average streamflow, while low flows are the 6 342 

months with the lowest average streamflow. Note that although the verification metrics are computed 343 

for each month separately, indices denoting the month are excluded from Equations (10), (11) and (12) 344 

below to avoid cluttering the notation.  345 

3.4.1 Reliability  346 

The reliability of forecasts is evaluated using the Probability Integral Transform (PIT) (Dawid, 1984; 347 

Laio and Tamea, 2007). To evaluate and compare reliability across 300 catchments, the p-value of the 348 

Kolmogorov-Smirnov (KS) test applied to the PIT is used. In this study, forecasts with PIT plots where 349 

the KS test yields a p-value ≥ 5% are classified as “reliable”. 350 

3.4.2 Sharpness 351 

The sharpness of forecasts is evaluated using the ratio of inter-quantile ranges (IQR) of streamflow 352 

forecasts and a historical reference (Tuteja et al., 2016). The following definition is used:  353 

𝐼𝑄𝑅𝑞 =  
1

𝑛
∑

𝐹𝑖(100− 𝑞)− 𝐹𝑖(𝑞)

𝐶𝑖(100− 𝑞)− 𝐶𝑖(𝑞)
𝑛
𝑖= 1  × 100 %       (10) 354 

where 𝐼𝑄𝑅𝑞 is the 𝐼𝑄𝑅 value corresponding to percentile 𝑞, 𝐹𝑖(𝑞), and  𝐶𝑖(𝑞) are the qth percentiles of 355 

forecast and historical reference for years i =  1, 2, ..., N, respectively.  356 

An 𝐼𝑄𝑅𝑞 of 100% indicates a forecast with the same sharpness as the reference, an 𝐼𝑄𝑅𝑞 below 100% 357 

indicates forecasts that are sharper (predictive limits that are smaller) than the reference, and an 𝐼𝑄𝑅𝑞 358 

above 100% indicates forecasts that are less sharp (predictive limits are wider) than the reference. We 359 

consider 𝐼𝑄𝑅99, i.e., the 𝐼𝑄𝑅 at the 99 percentile, in order to detect forecasts with unreasonably long 360 

tails in their predictive distributions. 361 

3.4.3 CRPS skill score (CRPSS)  362 

The 𝐶𝑅𝑃𝑆 metric quantifies the difference between a forecast distribution and observations, as follows 363 

(Hersbach, 2000): 364 

𝐶𝑅𝑃𝑆 =  ∫ [𝐹𝑓(𝑦) − 𝐹𝑜(𝑦)]
2

𝑑𝑦
∞

−∞
         (11) 365 

where Ff  and Fo  are the cumulative distribution functions (cdfs) of the streamflow forecast and 366 

observation, respectively. The cdf of the observation is taken as the Heaviside step function at the 367 

observed point value.  368 
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The 𝐶𝑅𝑃𝑆  summarises the reliability, sharpness and bias attributes of the forecast (Hersbach, 2000). A 369 

“perfect” forecast – namely a point prediction that matches the actual value of the predicted quantity – 370 

has 𝐶𝑅𝑃𝑆𝑃 = 0. In this work, we use  𝐶𝑅𝑃𝑆 skill score, CRPSS, defined by:  371 

𝐶𝑅𝑃𝑆𝑆 =  
𝐶𝑅𝑃𝑆𝐹−𝐶𝑅𝑃𝑆𝐶

𝐶𝑅𝑃𝑆𝑃−𝐶𝑅𝑃𝑆𝐶  ×  100%        (12) 372 

where 𝐶𝑅𝑃𝑆𝐹, 𝐶𝑅𝑃𝑆𝐶  and 𝐶𝑅𝑃𝑆𝑃 represent the 𝐶𝑅𝑃𝑆 value for model forecast, climatology and 373 

“perfect” forecast respectively. A higher CRPSS indicates better performance, with a value of 0 374 

representing the same performance as climatology. 375 

3.4.4  Historical reference 376 

The IQR and CRPSS metrics are defined as skill scores relative to a reference forecast. In this work, we 377 

use the climatology as the reference forecast, as it represents the long-term climate condition. To 378 

construct these “climatological forecasts”, we used the same historical reference as the operational 379 

seasonal streamflow forecasting service of the Bureau of Meteorology. This reference is resampled from 380 

a Gaussian probability distribution fitted to the observed streamflow data transformed using the log-sinh 381 

transformation (Equation 7). This approach leads to more stable and continuous historical reference 382 

estimates than sampling directly from the empirical distribution of historical streamflow, and can be 383 

computed at any percentile (which facilitates comparison with forecast percentiles). Although the choice 384 

of a particular reference affects the computation of skill scores, it does not affect the ranking of error 385 

models when the same reference is used, which is the main aim of this paper. 386 

3.4.5 Summary Skill: Summarising forecast performance using multiple metrics 387 

When evaluating forecast performance, a focus on any single individual metric can lead to misleading 388 

interpretations. For example, two forecasts might have a similar sharpness, however, if one is not 389 

reliable, then it can over or underestimate risk which could lead to a sub-optimal decision by forecast 390 

users (e.g. a water resources manager). 391 

Given inevitable trade-offs between individual metrics (McInerney et al., 2017), it is important to 392 

consider multiple metrics jointly rather than individually. Following the approach suggested by Gneiting 393 

et al. (2007), we consider a forecast to have “high skill” when it is both reliable and has a better sharpness 394 

than climatology. To determine the “summary skill” of the forecasts in each catchment, we evaluate the 395 

total number of months (out of 12) in which forecasts are reliable (i.e., with a p-value greater than 5%) 396 

and sharper than the climatology (i.e., IQR99 < 100%). Accordingly, a catchment is classified as having 397 

high (low) summary skill if it has a 10-12 months (0-2 months) with reliable forecasts that are shaper 398 
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than climatology. Note that we do not include the CRPSS in the summary skill, because the CRPSS does 399 

not provide an independent measure of forecast attribute (see Section 3.4.3 for more details). 400 

A table providing the percentage of catchments with high and low summary skills is used to summarise 401 

forecasts performance. In addition, to identify any geographic trends in the forecast performance, the 402 

summary skills are plotted on a map. The summary skills together with individual skill score values are 403 

used to evaluate the overall forecast performance.  404 

4 Results 405 

Results for monthly and seasonal streamflow forecasts are now presented. Section 4.1 compares the 406 

uncorrected and post-processed streamflow forecast performance. Section 4.2 evaluates the performance 407 

of post-processed streamflow forecasts obtained using the Log, Log-Sinh and BC0.2 schemes. The 408 

CRPSS, reliability and sharpness metrics are presented in Figure 4 and Figure 5 for monthly and seasonal 409 

forecasts respectively.  410 

Initial inspection of results found considerable overlap in the performance metrics achieved by the error 411 

models. To determine whether the differences in metrics are consistent over multiple catchments, the 412 

Log and Log-Sinh schemes are compared to the BC0.2 scheme. This comparison is presented in  413 

Figure 6 and Figure 7 for monthly and seasonal forecasts respectively. The BC0.2 scheme is taken as 414 

the baseline because inspection of Figure 4 and Figure 5 suggests that the BC0.2 scheme has better 415 

median sharpness than the Log and Log-Sinh schemes, over all the catchments and for both high and 416 

low flow months individually.  417 

The streamflow forecast time-series and corresponding skill for a single representative site, Dieckmans 418 

Bridge, are presented in Figures 8 and 9, respectively. 419 

The results are presented separately for wet and dry catchments, as well as separately for high and low 420 

flow months (Sections 3.2 and 3.4). The summary skills of the monthly and seasonal forecasts are 421 

presented in Figure 10 and Figure 11. The figures include a histogram of summary skills across all 422 

catchments to enable comparison between the uncorrected and the post-processing approaches. 423 

4.1 Comparison of uncorrected and post-processed streamflow forecasts: Individual 424 

metrics 425 

In terms of CRPSS, largest improvement as a result of post-processing using the Log, Log-Sinh and 426 

BC0.2 schemes occurs in dry catchments for both monthly (Figure 4c) and seasonal forecasts (Figure 427 

5c). For example, when post-processing is used with the three transformation schemes, the median 428 

CRPSS of monthly forecasts in dry catchments increases from approximately 7% (high flow months) 429 
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and -15% (low flow months) to more than 10% (Figure 4c) for both high and low flows. Visible 430 

improvement is also observed in dry catchments for seasonal forecasts, however, the improvement is 431 

not as pronounced as for monthly forecasts (Figure 5c). 432 

In terms of reliability, the performance of uncorrected streamflow forecasts is poor, with about 50% of 433 

the catchments being characterized by unreliable forecasts at both the monthly and seasonal time scales 434 

(Figure 4 and Figure 5, middle row). In comparison, post-processing using the three transformation 435 

approaches produces much better reliability, achieving reliable forecasts in more than 90% of the 436 

catchments.  437 

In terms of sharpness, the uncorrected forecasts and the BC0.2 post-processed forecasts are generally 438 

sharper than forecasts generated using the other transformations (Figures 4g and 5g). The use of post-439 

processing achieves much better sharpness than uncorrected forecasts for low flow months, particularly 440 

in dry catchments. For example, for low flow months in dry catchments (Figure 4i), the median IQR99 441 

is greater than 200% while similar values range between 40-100% for post-processed forecasts. 442 

Similarly, for seasonal forecasts, post-processing approaches improve the median sharpness from in 443 

excess of 150% (uncorrected forecasts) to 50%-110% (Figure 45i).  444 

4.2 Comparison of residual error models for post-processing: Individual metrics 445 

In terms of CRPSS, Figure 4 (a, b, c) and Figure 5 (a, b, c) show considerable overlap in the boxplots 446 

corresponding to all three residual error models, both in wet and dry catchments. This finding suggests 447 

little difference in the performance of the residual error models, and is further confirmed by Figure 6 (a, 448 

b, c) and Figure 7 (a, b, c), which show boxplots of the differences between the CRPSS of the Log and 449 

Log-Sinh schemes versus the CRPSS of the BC0.2 scheme. Across all catchments, the distribution of 450 

these differences is approximately symmetric with a mean close to 0. In dry catchments, the BC0.2 451 

slightly outperforms the Log scheme for high flow months and the Log-Sinh scheme slightly 452 

outperforms the Log scheme for low flow months. Overall, these results suggest that none of the Log, 453 

Log-Sinh or BC0.2 schemes is consistently better in terms of CRPSS values. 454 

In terms of reliability, post-processing using any of the three residual error models produces reliable 455 

forecasts at both monthly and seasonal scales, and in the majority of the catchments (Figure 4 and Figure 456 

5, middle row). The median p-value is approximately 60% for monthly forecasts compared with 45% 457 

for seasonal forecasts. This indicates that better reliability is achieved at shorter lead times. Median 458 

reliability is somewhat reduced when using the BC0.2 scheme compared to the Log and Log-Sinh 459 

schemes in wet catchments (Figure 6e), but not so much in dry catchments (Figure 8f). Nevertheless, 460 

the monthly and seasonal forecasts are reliable in 96% and 91% of the catchments, respectively. The 461 
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corresponding percentages for the Log scheme are 97% and 94%, and for Log-Sinh they are 95% and 462 

90%. 463 

In terms of sharpness, the BC0.2 scheme produces much sharper forecasts than the Log and Log-Sinh 464 

schemes. This finding holds in all cases (i.e., high/low flow months and wet/dry catchments), both for 465 

monthly and seasonal forecasts (Figure 4 and Figure 5, bottom row). The plot of differences in the 466 

sharpness metric (Figure 6 and Figure 7, bottom row) clearly highlights this improvement. In half of the 467 

catchments, during both high and low flow months, the BC0.2 scheme improves the IQR99 by 30% or 468 

more compared to the Log and Log-Sinh schemes. In dry catchments, the magnitude of the 469 

improvements are higher than wet catchments. For example, in dry catchments during high flow months, 470 

the BC0.2 scheme improves on the IQR99 of Log and Log-Sinh by 40-60% in over a half of the 471 

catchments, and by as much as ~170%-190% in a quarter of the catchments. 472 

To highlight the implication of these results, a representative streamflow forecast time-series at 473 

Dieckmans Bridge catchment (site id: 145010A) is shown in Figure 8 and performance metrics 474 

calculated over six high and low flow months are shown in Figure 9. In terms of reliability, the 475 

uncorrected forecast has a number of observed data points outside the 99% predictive range (Figure 8a). 476 

This is an indication that the forecast is unreliable. This finding can also be confirmed from the 477 

corresponding p-value in Figure 9, which shows that the forecast is below the reliability threshold during 478 

most of the high flow months and also during some low flow months. In terms of sharpness, Log and 479 

Log-Sinh schemes produce a wider 99% predictive range than BC0.2 (Figures 8 and 9). 480 

4.3 Comparison of summary skill between uncorrected and post-processing approaches 481 

Figure 10 and Figure 11 show the geographic distribution of the summary skill of the uncorrected and 482 

post-processing approaches for monthly and seasonal forecasts respectively. The summary skill 483 

aggregates multiple verifications metrics: it represents the number of months with streamflow forecasts 484 

that are both reliable and exhibit a sharpness that is better than climatology. Table 1 provides a summary 485 

of the percentage of catchments with high and low summary skill for the uncorrected and post-processing 486 

approaches for monthly and seasonal forecasts. Catchments with high (low) summary skill are defined 487 

as those with 10-12 months (0-2 months) with forecasts that are reliable and sharper than climatology.   488 

At the monthly scale (Figure 10 and Table 1), we obtain the following key findings: 489 

 Uncorrected forecasts perform worse than post-processing techniques in the sense that they have 490 

low summary skill in the largest percentage of catchments (16%). The percentage of catchments 491 

where high summary skill is achieved is 40%. 492 
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 Post-processing forecasts with the Log and Log Sinh scheme, reduces the percentage of 493 

catchments with low summary skills to 2% and 7% respectively. However, the percentage of 494 

catchments with high summary skill also decreases (in comparison to unprocessed forecasts), to 495 

33% for both Log and Log-Sinh. 496 

 Post-processing with the BC0.2 scheme provides the best performance, with the smallest 497 

percentage of catchments with low summary skills (<1%) and the largest percentage of 498 

catchments with high summary skills (84%). Figure 10 shows the improvement achieved by the 499 

BC0.2 scheme (compared to the Log/Log Sinh schemes) is most pronounced in NSW and in the 500 

tropical catchments in QLD and NT. The few catchments where the BC0.2 scheme does not 501 

achieve a high summary skill are located in the north and north-west of Australia. 502 

The findings for seasonal forecasts (Figure 11 and Table 1) are as follows: 503 

 Log scheme has the largest percentage (19%) of catchments with low summary skill and a 504 

relatively small percentage of catchments (9%) with high summary skill (9%).  505 

 Post-processing forecasts with the Log and Log-Sinh schemes reduces the percentages of 506 

catchments with low summary skill to 18% and 17% respectively. The percentage of catchments 507 

with high summary skill increases to 12% and 22% respectively.  508 

 Post-processing with the BC0.2 scheme once again provides a clear improvement: it produces 509 

forecasts with low summary skill in only 2% of the catchments, and achieves high summary skill 510 

in 54% of the catchments. Figure 11, shows that similar to monthly forecasts, the biggest 511 

improvements occur in the NSW and Queensland regions of Australia.  512 

Overall, the summary skills of post-processing approaches are lower for seasonal forecasts than for 513 

monthly forecasts. Table 1 shows that, across all schemes, BC0.2 results in a larger percentage of 514 

catchments with low summary skill and a larger percentage of catchments with high summary skill.  515 

4.4 Summary 516 

Sections 4.1-4.3 show that post-processing produces major improvements in reliability, as well as 517 

CRPSS and sharpness, particularly in dry catchments. Although all three residual error models under 518 

consideration provide improvements in some of the performance metrics, the BC0.2 scheme consistently 519 

produces better sharpness than the Log and Log-Sinh schemes, while maintaining similar reliability and 520 

CRPSS. This finding holds for both monthly and, to a less degree, seasonal forecasts. Of the three 521 

residual error models, the BC0.2 scheme improves by the largest margin the percentage of sites and the 522 

number of months where the post-processed forecasts are reliable and sharper than climatology. 523 
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5 Discussion 524 

5.1 Benefit of post-processing  525 

A comparison of uncorrected and post-processed streamflow forecasts was provided in Section 4.1. 526 

Uncorrected forecasts have reasonable sharpness (except for dry catchments), but suffer from low 527 

reliability: uncorrected forecasts are unreliable at approximately 50% of the sites. In wet catchments, 528 

poor reliability is due to overconfident forecasts, which appears a common concern in dynamic 529 

forecasting approaches (Wood and Schaake, 2008). In dry catchments, uncorrected forecasts are both 530 

unreliable and exhibit poor sharpness. Post-processing is thus particularly important to correct for these 531 

shortcomings and improve forecast skill. In this study, all post-processing models provide a clear 532 

improvement in reliability and sharpness, especially in dry catchments. The value of post-processing is 533 

more significant in dry catchments than in wet catchments (Figure 4 and Figure 5). This finding can be 534 

attributed to the challenge of capturing key physical processes in modelling dry and ephemeral 535 

catchments (Ye et al., 1997) as well as the challenge of achieving accurate rainfall forecasts in arid areas. 536 

In such cases, the hydrological model forecasts are particularly poor and leave a lot of room for 537 

improvement: post-processing can hence make a big difference on the quality of results. 538 

5.2 Interpretation of differences between residual error models 539 

We now discuss the large differences in sharpness between the BC0.2 scheme versus the Log and Log-540 

Sinh schemes. The Log-Sinh residual error model was designed by Wang et al. (2012) in order to 541 

improve the reliability and sharpness of predictions, particularly for high flows, and has worked well 542 

when used as part of statistical modelling system for operational streamflow forecasts by the Bureau of 543 

Meteorology. The Log-Sinh transformation corresponds to a variance stabilizing function that (for 544 

certain parameter values) tapers off for high flows. In theory, this feature can prevent the explosive 545 

growth of predictions for high flows that can occur with the log and Box-Cox residual error models 546 

(especially when 0  ). 547 

McInerney et al. (2017) found that, when modelling perennial catchments at the daily scale, the Log-548 

Sinh scheme did not achieve better sharpness than the Log scheme; instead, the parameters for the Log 549 

scheme tended to converge to values for which the tapering off of the Log-Sinh scheme occurs well 550 

outside the range of simulated flows, and hence the Log-Sinh scheme effectively reduces to the Log 551 

scheme. In contrast, the Box-Cox error model when using a fixed 0   has a variance-stabilizing 552 

function that gradually flattens as streamflow increases, i.e., it exhibits the “desired” tapering-off 553 

behaviour. 554 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-214
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 26 April 2018
c© Author(s) 2018. CC BY 4.0 License.



20 

 

Our findings in this study confirm the insights of McInerney et al. (2017) – namely that the Log-Sinh 555 

scheme produces comparable sharpness to the Log scheme – across a larger number of catchments. This 556 

finding indicates that insights from modelling residual errors at the daily scale apply at least to some 557 

extent to streamflow forecast post-processing at the monthly and seasonal scales. Note the minor 558 

difference in the treatment of the offset parameter c in equation (6): in the Log scheme used in McInerney 559 

et al. (2017) this parameter is inferred, whereas in this study it is fixed a priori. This minor difference 560 

does not impact on the qualitative behaviour of the error models, as described earlier in this section. The 561 

BC0.2 scheme provides an opportunity to further improve forecast performance relative to what is 562 

currently possible using the Log and Log-Sinh schemes when used as residual error post-processor of 563 

forecasts in a dynamical modelling systems. 564 

5.3 Importance of using multiple metrics to assess forecast performance 565 

The study results show that relying on a single metric for evaluating forecast performance can lead to 566 

sub-optimal conclusions. For example, if one considers the CRPSS metric alone, all post-processing 567 

schemes yield comparable performance and there is no basis for favouring any single one of them. 568 

However, once sharpness is taken into consideration explicitly, the BC0.2 scheme can be recommended 569 

due to significantly better sharpness than the Log and Log-Sinh schemes. Similarly, comparisons based 570 

solely on CRPSS might suggest reasonable performance of the uncorrected forecasts (55%-80% of 571 

months have CRPSS > 0 depending on high/low flow months and monthly/seasonal forecasts), yet once 572 

reliability is considered explicitly, it is found that uncorrected forecasts are unreliable at approximately 573 

50% of the catchments. Note that, for example, CRPSS reflects an implicitly weighted combination of 574 

reliability, sharpness and bias characteristics of the forecasts (Hersbach, 2000), whereas the reliability 575 

and sharpness metrics are specifically designed to target reliability and sharpness attributes respectively. 576 

These findings highlight the value of multiple independent performance metrics and diagnostics that 577 

evaluate specific attributes of the forecasts, and highlight important limitations of aggregate measures 578 

of performance (Clark et al., 2011).  579 

A number of challenges and questions remain in regards to selecting the verification metrics for specific 580 

forecasting systems and applications. An important question is how to include user needs into a forecast 581 

verification protocol. This could be accomplished by tailoring the evaluation metrics to the requirements 582 

of users. Another key question is to what extent do measures of forecast skill correlate to the economic 583 

and/or social value of the forecast? This question was investigated by Murphy and Ehrendorfer (1987) 584 

and Wandishin and Brooks (2002), who found the relationship between quality and value of a forecast 585 

to be essentially nonlinear: an increase in forecast quality may not necessarily lead to a proportional 586 

increase in its value.  587 
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5.4 Importance of performance evaluation over large numbers of catchments 588 

When designing an operational forecast service for locations with streamflow regimes as diverse and 589 

variable as in Australia (Taschetto and England, 2009), it is essential to thoroughly evaluate multiple 590 

modelling methods over multiple locations to ensure the findings are sufficiently robust and general. 591 

This was the major reason for considering the large set of 300 catchments in our study. This setup also 592 

yields valuable insights into spatial patterns in forecast performance. For example, the Log and Log-593 

Sinh schemes perform relatively well in catchments in South-Eastern Australia, and relatively worse in 594 

catchments in Northern and North-Eastern Australia (Figure 10 and Figure 11). In contrast, the BC0.2 595 

scheme performs well across the majority of the catchments in all regions included in the evaluation. 596 

The evaluation over a large number of catchments in different hydro-climatic regions is clearly beneficial 597 

to establish the robustness of post-processing methods. Restricting the analysis to a smaller number of 598 

catchments would have led to less conclusive findings. 599 

5.5 Implication of results for water resource management 600 

The management of water resources, for example, deciding which water source to use for a particular 601 

purpose or allocating environmental flows, requires an understanding of the current and future 602 

availability of water. For water resources systems with long hydrological records, water managers have 603 

devised techniques to evaluate current water availability, water demand and losses. However, one of the 604 

main unknowns is the volume of future system inflows. Streamflow forecasts thus 605 

provide crucial information to water managers and users regarding the future availability of water, thus 606 

helping reduce uncertainty in decision making. The ability of the BC0.2 post-processing scheme to 607 

improve forecast sharpness (precision) while maintaining forecast accuracy and reliability can hence 608 

lead to improved operational planning and management of water resources. 609 

5.6 Treatment of zero flows 610 

The post-processing approach using the three residual error models described above does not make 611 

special provision for zero flows in the calibration approach. Robust handling of zero flows in statistical 612 

models is an active research area (Wang and Robertson, 2011; Smith et al., 2015), and advances in this 613 

area are certainly relevant to seasonal streamflow forecasting. 614 

6 Conclusions 615 

This study focused on developing robust streamflow forecast post-processing schemes for an operational 616 

forecasting service at the monthly and seasonal time scales. For such forecasts to be useful to water 617 

managers and decision-makers, they should be reliable and exhibit sharpness that is better than 618 

climatology. 619 
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We investigated streamflow forecast postprocessor schemes employing residual error models based on 620 

three data transformations, namely the logarithmic (Log), log-sinh (Log-Sinh) and Box-Cox 621 

transformation with λ = 0.2 (BC0.2). The Australian Bureau of Meteorology’s dynamic modelling 622 

system was used as the platform for the empirical analysis, which was carried out over 300 Australian 623 

catchments with diverse hydro-climatic conditions. 624 

The outcomes of this study are: 625 

1. Uncorrected forecasts (no post-processing) perform poorly in terms of reliability, which is an 626 

indication that forecast uncertainties are misrepresented. All three post-processing schemes 627 

substantially improve the reliability of streamflow forecasts, both in terms of the dedicated 628 

reliability metric and in terms of the summary skill given by the CRPSS; 629 

2. From the post-processing schemes considered in this work, the BC0.2 scheme is found best 630 

suited for operational application. The BC0.2 scheme provides the sharpest forecasts without 631 

sacrificing reliability, as measured by the reliability and CRPSS metrics. In particular, the BC0.2 632 

scheme produces forecasts that are both reliable and sharper than climatology at substantially 633 

more sites than the alternative Log and Log-Sinh schemes.    634 

In conclusion, this study developed a robust streamflow forecast post-processing scheme that achieves 635 

reliable and consistently sharper-than-climatology streamflow forecasts. This scheme is well suited for 636 

operational application, and offers the opportunity to improve decision support, especially at sites where 637 

climatology is presently used to guide operational decisions. 638 

7 Data Availability  639 

The data underlying this research can be accessed from the following links: Observed rainfall data 640 

(http://www.bom.gov.au/climate/); POAMA rainfall forecast (http://poama.bom.gov.au/); and observed 641 

streamflow data (http://www.bom.gov.au/waterdata/). 642 
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 848 

Table 1. Percentage of catchments with high and low summary skill for the different residual error 849 

schemes for both monthly and seasonal forecasts. High (low) summary skill is defined as the percentage 850 

of catchments with 10-12 months (0-2 months) reliable forecasts that are sharper than climatology.  851 

Residual Error Scheme Uncorrected 

forecasts 

Log Log-Sinh BC0.2 

Monthly Forecasts 

High Summary Skill 40% 33% 33% 84% 

Low Summary Skill 16% 2% 7% <1% 

Seasonal Forecasts 

High Summary Skill 46% 9% 20% 54% 

Low Summary Skill 14% 19% 17% 2% 

 852 

 853 

 854 

  855 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-214
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 26 April 2018
c© Author(s) 2018. CC BY 4.0 License.



30 

 

Figures 856 

 

 

 

Figure 1: Schematic of the dynamic streamflow forecasting system used in this study. A similar 

approach is used by the Australian Bureau of Meteorology for its monthly and seasonal streamflow 

forecasting service. 
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 859 

 860 

Figure 2: Locations of the 300 catchments used in this study. The catchments are classified as dry or wet 861 

based on the aridity index. The Koppen climate classification for Australia are shown. The Dieckmans 862 

Bridge catchment (site id: 145010A), used as a representative site in Figure 8, is indicated by the red 863 

circle. 864 
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 877 

  878 

Figure 3: Schematic of the cross-validation framework used for forecast verification as an example for 879 

model validation year 1990 (after Tuteja et al., 2016). 880 
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 892 

Figure 4: Performance of monthly forecasts in terms of CRPSS, reliability (PIT p-value) and sharpness 893 

(IQR99 ratio). 894 
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 897 

Figure 5: Performance of seasonal forecasts in terms of CRPSS, reliability (PIT p-value) and sharpness 898 

(IQR99 ratio). 899 
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 903 
 904 

Figure 6: Distributions of differences in the monthly forecast performance metrics of the Log and Log-905 

Sinh schemes compared to the BC0.2 scheme. 906 
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 912 

Figure 7: Distributions of differences in the seasonal forecast performance metrics of the Log and Log-913 

Sinh schemes compared to the BC0.2 scheme. 914 
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 917 
 918 

Figure 8: Seasonal streamflow forecast time series (blue line) and observations (red dots) at Dieckmans 919 

Bridge catchment (site id: 145010A). The shaded area shows the 99% prediction limits. 920 
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 921 

Figure 9: Seasonal streamflow forecast skill-score at the Dieckmans Bridge catchment corresponding to 922 

the time series shown in Figure 8 for six high flow months and six low flow months. Note that skill-923 

score values of 5%, 5% and 100% are indicated for CRPSS, p-value and IQR ratio respectively, using 924 

dashed lines. 925 
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 933 

 934 

Figure 10: Summary skill of monthly forecasts obtained using the Log, Log-Sinh and BC0.2 schemes 935 

across 300 Australian catchments. The performance of uncorrected forecasts is also shown. The 936 

summary skill is defined as the number of months where the forecasts are reliable and sharper than 937 

climatology. The inset histogram shows the percentage of catchments in each performance category and 938 

also serves as the color legend. 939 
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 941 
Figure 11: Summary skill of seasonal forecasts obtained using the Log, Log-Sinh and BC0.2 schemes 942 

across 300 Australian catchments. See Figure 10 for details.    943 
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